SINE insertions: powerful tools for molecular systematics.
نویسندگان
چکیده
Short interspersed repetitive elements, or SINEs, are tRNA-derived retroposons that are dispersed throughout eukaryotic genomes and can be present in well over 10(4) total copies. The enormous volume of SINE amplifications per organism makes them important evolutionary agents for shaping the diversity of genomes, and the irreversible, independent nature of their insertion allows them to be used for diagnosing common ancestry among host taxa with extreme confidence. As such, they represent a powerful new tool for systematic biology that can be strategically integrated with other conventional phylogenetic characters, most notably morphology and DNA sequences. This review covers the basic aspects of SINE evolution that are especially relevant to their use as systematic characters and describes the practical methods of characterizing SINEs for cladogram construction. It also discusses the limits of their systematic utility, clarifies some recently published misunderstandings, and illustrates the effective application of SINEs for vertebrate phylogenetics with results from selected case studies. BioEssays 22:148-160, 2000.
منابع مشابه
Exploring frontiers in the DNA landscape: an introduction to the symposium "Genome Analysis and the Molecular Systematics of Retroelements".
The emerging field of phylogenomics is influencing both the amount and type of characters being brought to bear on long-standing problems in systematic biology. Moreover, the proliferation of sequence information from genome projects in concert with the development of new informatics tools is widening access to comparative data on retroelements to a broad cross section of investigators. Motivat...
متن کاملAn ancient retrovirus-like element contains hot spots for SINE insertion.
Vertebrate retrotransposons have been used extensively for phylogenetic analyses and studies of molecular evolution. Information can be obtained from specific inserts either by comparing sequence differences that have accumulated over time in orthologous copies of that insert or by determining the presence or absence of that specific element at a particular site. The presence of specific copies...
متن کاملSINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates.
Transpositions of Alu sequences, representing the most abundant primate short interspersed elements (SINE), were evaluated as molecular cladistic markers to analyze the phylogenetic affiliations among the primate infraorders. Altogether 118 human loci, containing intronic Alu elements, were PCR analyzed for the presence of Alu sequences at orthologous sites in each of two strepsirhine, New Worl...
متن کاملPhylogeny of the macaques (Cercopithecidae: Macaca) based on Alu elements.
Genus Macaca (Cercopithecidae: Papionini) is one of the most successful primate radiations. Despite previous studies on morphology and mitochondrial DNA analysis, a number of issues regarding the details of macaque evolution remain unsolved. Alu elements are a class of non-autonomous retroposons belonging to short interspersed elements that are specific to the primate lineage. Because retroposo...
متن کاملGenome-wide analysis of short interspersed nuclear elements SINES revealed high sequence conservation, gene association and retrotranspositional activity in wheat
Short interspersed nuclear elements (SINEs) are non-autonomous non-LTR retroelements that are present in most eukaryotic species. While SINEs have been intensively investigated in humans and other animal systems, they are poorly studied in plants, especially in wheat (Triticum aestivum). We used quantitative PCR of various wheat species to determine the copy number of a wheat SINE family, terme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BioEssays : news and reviews in molecular, cellular and developmental biology
دوره 22 2 شماره
صفحات -
تاریخ انتشار 2000